Question 161260


Looking at the expression {{{x^2-10x+9}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-10}}}, and the last term is {{{9}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{9}}} to get {{{(1)(9)=9}}}.



Now the question is: what two whole numbers multiply to {{{9}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-10}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{9}}} (the previous product).



Factors of {{{9}}}:

1,3,9

-1,-3,-9



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{9}}}.

1*9
3*3
(-1)*(-9)
(-3)*(-3)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-10}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>1+9=10</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>3+3=6</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>-9</font></td><td  align="center"><font color=red>-1+(-9)=-10</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-3+(-3)=-6</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{-9}}} add to {{{-10}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{-9}}} both multiply to {{{9}}} <font size=4><b>and</b></font> add to {{{-10}}}



Now replace the middle term {{{-10x}}} with {{{-x-9x}}}. Remember, {{{-1}}} and {{{-9}}} add to {{{-10}}}. So this shows us that {{{-x-9x=-10x}}}.



{{{x^2+highlight(-x-9x)+9}}} Replace the second term {{{-10x}}} with {{{-x-9x}}}.



{{{(x^2-x)+(-9x+9)}}} Group the terms into two pairs.



{{{x(x-1)+(-9x+9)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-1)-9(x-1)}}} Factor out {{{9}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-9)(x-1)}}} Combine like terms. Or factor out the common term {{{x-1}}}


---------------------------------------------



Answer:



So {{{x^2-10x+9}}} factors to {{{(x-9)(x-1)}}}.



Note: you can check the answer by FOILing {{{(x-9)(x-1)}}} to get {{{x^2-10x+9}}} or by graphing the original expression and the answer (the two graphs should be identical).