Question 159301
I'm assuming you want to factor these? I'll do the first one to get you started





Looking at the expression {{{y^2-5y+4}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-5}}}, and the last term is {{{4}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{4}}} to get {{{(1)(4)=4}}}.



Now the question is: what two whole numbers multiply to {{{4}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{4}}} (the previous product).



Factors of {{{4}}}:

1,2,4

-1,-2,-4



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{4}}}.

1*4
2*2
(-1)*(-4)
(-2)*(-2)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>1+4=5</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>2+2=4</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>-4</font></td><td  align="center"><font color=red>-1+(-4)=-5</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-2+(-2)=-4</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{-4}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{-4}}} both multiply to {{{4}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5y}}} with {{{-y-4y}}}. Remember, {{{-1}}} and {{{-4}}} add to {{{-5}}}. So this shows us that {{{-y-4y=-5y}}}.



{{{y^2+highlight(-y-4y)+4}}} Replace the second term {{{-5y}}} with {{{-y-4y}}}.



{{{(y^2-y)+(-4y+4)}}} Group the terms into two pairs.



{{{y(y-1)+(-4y+4)}}} Factor out the GCF {{{y}}} from the first group.



{{{y(y-1)-4(y-1)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(y-4)(y-1)}}} Combine like terms. Or factor out the common term {{{y-1}}}


---------------------------------------------



Answer:



So {{{y^2-5y+4}}} factors to {{{(y-4)(y-1)}}}.



Note: you can check the answer by FOILing {{{(y-4)(y-1)}}} to get {{{y^2-5y+4}}} or by graphing the original expression and the answer (the two graphs should be identical).