Question 158558
Remember:
{{{Area[et]=s^2sqrt(3)/4}}} -------------------> eqn 1
The {{{sides=s}}} are unknown? But remember the formula for circumscribed circle radius------>  {{{r=s*sqrt(3)/3}}} ------> eqn 2
The {{{radius=r}}} is unknown? But {{{Area[c]}}} is given so we can get {{{r}}}:
{{{A[c]=pi*r^2}}}
{{{254.47=pi*r^2}}}
{{{(254.47/pi)=cross(pi)*r^2/cross(pi)}}}
{{{r=sqrt(254.47/pi)}}}
{{{r=9meters}}}
Go back eqn 2:
{{{9=s*sqrt(3)/3}}}
{{{(9*3)/sqrt(3)=s}}}
{{{s=27/sqrt(3)}}} , substitute in eqn 1
{{{A[et]=(27/sqrt(3))^2*sqrt(3)/4}}}
{{{A[et]=(729/3)*sqrt(3)/4}}}
{{{A[et]=243*sqrt(3)/4=105.22m^2}}}, FINAL ANSWER
.Note: see www.mathwords.com
Thank you,
Jojo