Question 156340


Looking at the expression {{{8x^2-22x-21}}}, we can see that the first coefficient is {{{8}}}, the second coefficient is {{{-22}}}, and the last term is {{{-21}}}.



Now multiply the first coefficient {{{8}}} by the last term {{{-21}}} to get {{{(8)(-21)=-168}}}.



Now the question is: what two whole numbers multiply to {{{-168}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-22}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-168}}} (the previous product).



Factors of {{{-168}}}:

1,2,3,4,6,7,8,12,14,21,24,28,42,56,84,168

-1,-2,-3,-4,-6,-7,-8,-12,-14,-21,-24,-28,-42,-56,-84,-168



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-168}}}.

1*(-168)
2*(-84)
3*(-56)
4*(-42)
6*(-28)
7*(-24)
8*(-21)
12*(-14)
(-1)*(168)
(-2)*(84)
(-3)*(56)
(-4)*(42)
(-6)*(28)
(-7)*(24)
(-8)*(21)
(-12)*(14)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-22}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-168</font></td><td  align="center"><font color=black>1+(-168)=-167</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>2+(-84)=-82</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-56</font></td><td  align="center"><font color=black>3+(-56)=-53</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>4+(-42)=-38</font></td></tr><tr><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>-28</font></td><td  align="center"><font color=red>6+(-28)=-22</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>7+(-24)=-17</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>8+(-21)=-13</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>12+(-14)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>168</font></td><td  align="center"><font color=black>-1+168=167</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>-2+84=82</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>56</font></td><td  align="center"><font color=black>-3+56=53</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-4+42=38</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-6+28=22</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-7+24=17</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-8+21=13</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-12+14=2</font></td></tr></table>



From the table, we can see that the two numbers {{{6}}} and {{{-28}}} add to {{{-22}}} (the middle coefficient).



So the two numbers {{{6}}} and {{{-28}}} both multiply to {{{-168}}} <font size=4><b>and</b></font> add to {{{-22}}}



Now replace the middle term {{{-22x}}} with {{{6x-28x}}}. Remember, {{{6}}} and {{{-28}}} add to {{{-22}}}. So this shows us that {{{6x-28x=-22x}}}.



{{{8x^2+highlight(6x-28x)-21}}} Replace the second term {{{-22x}}} with {{{6x-28x}}}.



{{{(8x^2+6x)+(-28x-21)}}} Group the terms into two pairs.



{{{2x(4x+3)+(-28x-21)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(4x+3)-7(4x+3)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-7)(4x+3)}}} Combine like terms. Or factor out the common term {{{4x+3}}}


---------------------------------------------



Answer:



So {{{8x^2-22x-21}}} factors to {{{(2x-7)(4x+3)}}}.



Note: you can check the answer by FOILing {{{(2x-7)(4x+3)}}} to get {{{8x^2-22x-21}}} or by graphing the original expression and the answer (the two graphs should be identical).