Question 156274
Note that the expression {{{(x^2-4)/(8-x^3)}}} can be simplified.
{{{(x^2-4)/(8-x^3)}}}
={{{(x^2-4)/(-(x^3-8))}}}    (As 8 - x^3 = -(x^3 - 8))
={{{-(x^2-4)/(x^3-8)}}}
={{{-(x^2-2^2)/(x^3-2^3)}}}
={{{-((x+2)(x-2))/((x-2)(x^2+2x+4))}}}
={{{-((x+2)cross((x-2)))/(cross((x-2))(x^2+2x+4))}}}
={{{-(x+2)/(x^2+2x+4)}}}
Now substitute x = 15 into the above expression to find f(15).
{{{f(15)= -(15+2)/(15^2+2*15+4)}}}
={{{-17/259}}}