Question 156297
# 4





Let's find the function value when {{{x=1}}}:



{{{y=10^x}}} Start with the given equation.



{{{y=10^(1)}}} Plug in {{{x=1}}}.



{{{y=10}}} Raise 10 to the first power to get 10



So if {{{x=1}}}, then {{{y=10}}}.


-------------


Let's find the function value when {{{x=2}}}:



{{{y=10^x}}} Start with the given equation.



{{{y=10^(2)}}} Plug in {{{x=2}}}.



{{{y=100}}} Raise 10 to the second power to get 100



So if {{{x=2}}}, then {{{y=100}}}.


-------------


Let's find the function value when {{{x=4}}}:



{{{y=10^x}}} Start with the given equation.



{{{y=10^(4)}}} Plug in {{{x=4}}}.



{{{y=10000}}} Raise 10 to the 4th power to get 10,000




So if {{{x=4}}}, then {{{y=10000}}}.


-------------


Let's find the function value when {{{x=8}}}:



{{{y=10^x}}} Start with the given equation.



{{{y=10^(8)}}} Plug in {{{x=8}}}.



{{{y=100000000}}} Raise 10 to the 8th power to get 100,000,000



So if {{{x=8}}}, then {{{y=100000000}}}.


-------------


Let's find the function value when {{{x=16}}}:



{{{y=10^x}}} Start with the given equation.



{{{y=10^(16)}}} Plug in {{{x=16}}}.



{{{y=1*10^16}}} Raise 10 to the 16th power to get {{{1*10^16}}} (this is a 1 followed by 16 zeros)




So if {{{x=16}}}, then {{{y=1*10^16}}}.


-------------


Now let's make a table of the values we just found.



<h4>Table of Values:</h4><pre>

<TABLE border="1" width="100">
<TR><TD>x</TD><TD>y</TD></TR><tr><td>1</td><td>10</td></tr>
<tr><td>2</td><td>100</td></tr>
<tr><td>4</td><td>10,000</td></tr>
<tr><td>8</td><td>100,000,000</td></tr>
<tr><td>16</td><td>1*10^16</td></tr>
</TABLE>

</pre>



Since we are dealing with an exponential function, this means that the function undergoes exponential growth. This is the fastest of all of the growth rates in this group.