Question 156294
# 2



Let's find the function value when {{{x=1}}}:



{{{y=x^2-3x+2}}} Start with the given equation.



{{{y=(1)^2-3(1)+2}}} Plug in {{{x=1}}}.



{{{y=1(1)-3(1)+2}}} Square {{{1}}} to get {{{1}}}.



{{{y=1-3(1)+2}}} Multiply {{{1}}} and {{{1}}} to get {{{1}}}.



{{{y=1-3+2}}} Multiply {{{-3}}} and {{{1}}} to get {{{-3}}}.



{{{y=0}}} Combine like terms.



So if {{{x=1}}}, then {{{y=0}}}.


-------------


Let's find the function value when {{{x=2}}}:



{{{y=x^2-3x+2}}} Start with the given equation.



{{{y=(2)^2-3(2)+2}}} Plug in {{{x=2}}}.



{{{y=1(4)-3(2)+2}}} Square {{{2}}} to get {{{4}}}.



{{{y=4-3(2)+2}}} Multiply {{{1}}} and {{{4}}} to get {{{4}}}.



{{{y=4-6+2}}} Multiply {{{-3}}} and {{{2}}} to get {{{-6}}}.



{{{y=0}}} Combine like terms.



So if {{{x=2}}}, then {{{y=0}}}.


-------------


Let's find the function value when {{{x=4}}}:



{{{y=x^2-3x+2}}} Start with the given equation.



{{{y=(4)^2-3(4)+2}}} Plug in {{{x=4}}}.



{{{y=1(16)-3(4)+2}}} Square {{{4}}} to get {{{16}}}.



{{{y=16-3(4)+2}}} Multiply {{{1}}} and {{{16}}} to get {{{16}}}.



{{{y=16-12+2}}} Multiply {{{-3}}} and {{{4}}} to get {{{-12}}}.



{{{y=6}}} Combine like terms.



So if {{{x=4}}}, then {{{y=6}}}.


-------------


Let's find the function value when {{{x=8}}}:



{{{y=x^2-3x+2}}} Start with the given equation.



{{{y=(8)^2-3(8)+2}}} Plug in {{{x=8}}}.



{{{y=1(64)-3(8)+2}}} Square {{{8}}} to get {{{64}}}.



{{{y=64-3(8)+2}}} Multiply {{{1}}} and {{{64}}} to get {{{64}}}.



{{{y=64-24+2}}} Multiply {{{-3}}} and {{{8}}} to get {{{-24}}}.



{{{y=42}}} Combine like terms.



So if {{{x=8}}}, then {{{y=42}}}.


-------------


Let's find the function value when {{{x=16}}}:



{{{y=x^2-3x+2}}} Start with the given equation.



{{{y=(16)^2-3(16)+2}}} Plug in {{{x=16}}}.



{{{y=1(256)-3(16)+2}}} Square {{{16}}} to get {{{256}}}.



{{{y=256-3(16)+2}}} Multiply {{{1}}} and {{{256}}} to get {{{256}}}.



{{{y=256-48+2}}} Multiply {{{-3}}} and {{{16}}} to get {{{-48}}}.



{{{y=210}}} Combine like terms.



So if {{{x=16}}}, then {{{y=210}}}.


-------------


Now let's make a table of the values we just found.



<a name="table">



<a href="#top">Jump to Top of Page</a>

<h4>Table of Values:</h4><pre>

<TABLE border="1" width="100">
<TR><TD>x</TD><TD>y</TD></TR><tr><td>1</td><td>0</td></tr>
<tr><td>2</td><td>0</td></tr>
<tr><td>4</td><td>6</td></tr>
<tr><td>8</td><td>42</td></tr>
<tr><td>16</td><td>210</td></tr>
</TABLE>

</pre>



Because the function is a quadratic, this means that the polynomial undergoes quadratic growth. This is faster than linear growth.