Question 156107
Let's do it step by step (x, then y, then z, then any constants)
{{{4x^3y^5z^2 - 12x^4y^6z^4 + 16x^2y^5z^3=x^2(4xy^5z^2-12x^2y^6z^4 + 16y^5z^3)}}}
{{{4x^3y^5z^2 - 12x^4y^6z^4 + 16x^2y^5z^3=x^2y^5(4xz^2-12x^2yz^4 + 16z^3)}}}
{{{4x^3y^5z^2 - 12x^4y^6z^4 + 16x^2y^5z^3=x^2y^5z^2(4x-12x^2yz^2 + 16z)}}}
{{{4x^3y^5z^2 - 12x^4y^6z^4 + 16x^2y^5z^3=4x^2y^5z^2(x-3x^2yz^2 + 4z)}}}
I think that's as much as you can do.