Question 153200
Are you sure that the expression is not  {{{10x^2-31x+15}}}???



Looking at the expression {{{10x^2-31x+15}}}, we can see that the first coefficient is {{{10}}}, the second coefficient is {{{-31}}}, and the last term is {{{15}}}.



Now multiply the first coefficient {{{10}}} by the last term {{{15}}} to get {{{(10)(15)=150}}}.



Now the question is: what two whole numbers multiply to {{{150}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-31}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{150}}} (the previous product).



Factors of {{{150}}}:

1,2,3,5,6,10,15,25,30,50,75,150

-1,-2,-3,-5,-6,-10,-15,-25,-30,-50,-75,-150



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{150}}}.

1*150
2*75
3*50
5*30
6*25
10*15
(-1)*(-150)
(-2)*(-75)
(-3)*(-50)
(-5)*(-30)
(-6)*(-25)
(-10)*(-15)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-31}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>150</font></td><td  align="center"><font color=black>1+150=151</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>75</font></td><td  align="center"><font color=black>2+75=77</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>3+50=53</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>5+30=35</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>6+25=31</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>10+15=25</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-150</font></td><td  align="center"><font color=black>-1+(-150)=-151</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-75</font></td><td  align="center"><font color=black>-2+(-75)=-77</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>-3+(-50)=-53</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-5+(-30)=-35</font></td></tr><tr><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>-25</font></td><td  align="center"><font color=red>-6+(-25)=-31</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-10+(-15)=-25</font></td></tr></table>



From the table, we can see that the two numbers {{{-6}}} and {{{-25}}} add to {{{-31}}} (the middle coefficient).



So the two numbers {{{-6}}} and {{{-25}}} both multiply to {{{150}}} <font size=4><b>and</b></font> add to {{{-31}}}



Now replace the middle term {{{-31x}}} with {{{-6x-25x}}}. Remember, {{{-6}}} and {{{-25}}} add to {{{-31}}}. So this shows us that {{{-6x-25x=-31x}}}.



{{{10x^2+highlight(-6x-25x)+15}}} Replace the second term {{{-31x}}} with {{{-6x-25x}}}.



{{{(10x^2-6x)+(-25x+15)}}} Group the terms into two pairs.



{{{2x(5x-3)+(-25x+15)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(5x-3)-5(5x-3)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-5)(5x-3)}}} Combine like terms. Or factor out the common term {{{5x-3}}}


---------------------------------------------



Answer:



So {{{10x^2-31x+15}}} factors to {{{(2x-5)(5x-3)}}}.



Note: you can check the answer by FOILing {{{(2x-5)(5x-3)}}} to get {{{10x^2-31x+15}}} or by graphing the original expression and the answer (the two graphs should be identical).