Question 152484
{{{((x^2+13x+12)/(x+2))/(x+1)}}} Start with the given expression.



{{{((x^2+13x+12)/(x+2))/((x+1)/(1))}}} Rewrite {{{x+1}}} as {{{(x+1)/(1)}}}



{{{((x^2+13x+12)/(x+2))((1)/(x+1))}}} Multiply the first fraction {{{(x^2+13x+12)/(x+2)}}} by the reciprocal of the second fraction {{{(x+1)/(1)}}}.



{{{(((x+12)(x+1))/(x+2))((1)/(x+1))}}} Factor {{{x^2+13x+12}}} to get {{{(x+12)(x+1)}}}.



{{{((x+12)(x+1))/((x+2)(x+1))}}} Combine the fractions. 



{{{((x+12)highlight((x+1)))/((x+2)highlight((x+1)))}}} Highlight the common terms. 



{{{((x+12)cross((x+1)))/((x+2)cross((x+1)))}}} Cancel out the common terms. 



{{{(x+12)/(x+2)}}} Simplify. 



So {{{((x^2+13x+12)/(x+2))/(x+1)}}} simplifies to {{{(x+12)/(x+2)}}}.



In other words, {{{((x^2+13x+12)/(x+2))/(x+1)=(x+12)/(x+2)}}} where {{{x<>-1}}} or {{{x<>-2}}}