Question 151257

{{{(sqrt(4)+sqrt(3))(sqrt(2)-sqrt(4))}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(sqrt(4))+sqrt(3))(highlight(sqrt(2))-sqrt(4))}}} Multiply the <font color="red">F</font>irst terms:{{{(sqrt(4))*(sqrt(2))=sqrt(8)=2*sqrt(2)}}}.



{{{(highlight(sqrt(4))+sqrt(3))(sqrt(2)+highlight(-sqrt(4)))}}} Multiply the <font color="red">O</font>uter terms:{{{(sqrt(4))*(-sqrt(4))=-4}}}.



{{{(sqrt(4)+highlight(sqrt(3)))(highlight(sqrt(2))-sqrt(4))}}} Multiply the <font color="red">I</font>nner terms:{{{(sqrt(3))*(sqrt(2))=sqrt(6)}}}.



{{{(sqrt(4)+highlight(sqrt(3)))(sqrt(2)+highlight(-sqrt(4)))}}} Multiply the <font color="red">L</font>ast terms:{{{(sqrt(3))*(-sqrt(4))=-sqrt(12)=-2*sqrt(3)}}}.



{{{2*sqrt(2)-4+sqrt(6)-2*sqrt(3)}}} Now collect every term to make a single expression.



So {{{(sqrt(4)+sqrt(3))(sqrt(2)-sqrt(4))}}} FOILs to {{{2*sqrt(2)-4+sqrt(6)-2*sqrt(3)}}}.



In other words, {{{(sqrt(4)+sqrt(3))(sqrt(2)-sqrt(4))=2*sqrt(2)-4+sqrt(6)-2*sqrt(3)}}}.