Question 151107
Do you want to factor this?





Looking at the expression {{{x^2-5x+6}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-5}}}, and the last term is {{{6}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{6}}} to get {{{(1)(6)=6}}}.



Now the question is: what two whole numbers multiply to {{{6}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{6}}} (the previous product).



Factors of {{{6}}}:

1,2,3,6

-1,-2,-3,-6



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{6}}}.

1*6
2*3
(-1)*(-6)
(-2)*(-3)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>1+6=7</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>2+3=5</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-1+(-6)=-7</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>-2+(-3)=-5</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{-3}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{-3}}} both multiply to {{{6}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5x}}} with {{{-2x-3x}}}. Remember, {{{-2}}} and {{{-3}}} add to {{{-5}}}. So this shows us that {{{-2x-3x=-5x}}}.



{{{x^2+highlight(-2x-3x)+6}}} Replace the second term {{{-5x}}} with {{{-2x-3x}}}.



{{{(x^2-2x)+(-3x+6)}}} Group the terms into two pairs.



{{{x(x-2)+(-3x+6)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-2)-3(x-2)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-3)(x-2)}}} Combine like terms. Or factor out the common term {{{x-2}}}


---------------------------------------------



Answer:



So {{{x^2-5x+6}}} factors to {{{(x-3)(x-2)}}}.



Note: you can check the answer by FOILing {{{(x-3)(x-2)}}} to get {{{x^2-5x+6}}} or by graphing the original expression and the answer (the two graphs should be identical).