Question 151060


{{{(4b+1/2)(8b-3/4)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(4b)+1/2)(highlight(8b)-3/4)}}} Multiply the <font color="red">F</font>irst terms:{{{(4*b)*(8*b)=32*b^2}}}.



{{{(highlight(4b)+1/2)(8b+highlight(-3/4))}}} Multiply the <font color="red">O</font>uter terms:{{{(4*b)*(-3/4)=-3*b}}}.



{{{(4b+highlight(1/2))(highlight(8b)-3/4)}}} Multiply the <font color="red">I</font>nner terms:{{{(1/2)*(8*b)=4*b}}}.



{{{(4b+highlight(1/2))(8b+highlight(-3/4))}}} Multiply the <font color="red">L</font>ast terms:{{{(1/2)*(-3/4)=-3/8}}}.



{{{32*b^2-3*b+4*b-3/8}}} Now collect every term to make a single expression.



{{{32*b^2+b-3/8}}} Now combine like terms.



So {{{(4b+1/2)(8b-3/4)}}} FOILS to {{{32*b^2+b-3/8}}}.



In other words, {{{(4b+1/2)(8b-3/4)=32*b^2+b-3/8}}}.