Question 150652


Looking at the expression {{{x^2+10x+21}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{10}}}, and the last term is {{{21}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{21}}} to get {{{(1)(21)=21}}}.



Now the question is: what two whole numbers multiply to {{{21}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{10}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{21}}} (the previous product).



Factors of {{{21}}}:

1,3,7,21

-1,-3,-7,-21



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{21}}}.

1*21
3*7
(-1)*(-21)
(-3)*(-7)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{10}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>1+21=22</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>3+7=10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-1+(-21)=-22</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-3+(-7)=-10</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{7}}} add to {{{10}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{7}}} both multiply to {{{21}}} <font size=4><b>and</b></font> add to {{{10}}}



Now replace the middle term {{{10x}}} with {{{3x+7x}}}. Remember, {{{3}}} and {{{7}}} add to {{{10}}}. So this shows us that {{{3x+7x=10x}}}.



{{{x^2+highlight(3x+7x)+21}}} Replace the second term {{{10x}}} with {{{3x+7x}}}.



{{{(x^2+3x)+(7x+21)}}} Group the terms into two pairs.



{{{x(x+3)+(7x+21)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+3)+7(x+3)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+7)(x+3)}}} Combine like terms. Or factor out the common term {{{x+3}}}


---------------------------------------------



Answer:



So {{{x^2+10x+21}}} factors to {{{(x+7)(x+3)}}}.



Note: you can check the answer by FOILing {{{(x+7)(x+3)}}} to get {{{x^2+10x+21}}} or by graphing the original expression and the answer (the two graphs should be identical).