Question 150625
{{{((11z^3)/(5p^6))((25p^8)/(121z))}}} Start with the given expression.



{{{((11z^3)(25p^8))/((5p^6)(121z))}}} Combine the fractions.



{{{(275p^8z^3)/((5p^6)(121z))}}} Multiply {{{11z^3}}} and {{{25p^8}}} to get {{{(11z^3)(25p^8)=11*25*p^8z^3=275p^8z^3}}}



{{{(275p^8z^3)/(55p^6z)}}} Multiply {{{5p^6}}} and {{{121z}}} to get {{{(5p^6)(121z)=5*11*p^6z=55p^6z}}}



{{{(5*5*11*p*p*p*p*p*p*p*p*z*z*z)/(5*11*p*p*p*p*p*p*z)}}} Expand. Remember, {{{275p^8z^3=5*5*11*p*p*p*p*p*p*p*p*z*z*z}}} and {{{55p^6z=5*11*p*p*p*p*p*p*z}}}



{{{(highlight(5)*5*highlight(11)*highlight(p)*highlight(p)*highlight(p)*highlight(p)*highlight(p)*highlight(p)*p*p*highlight(z)*z*z)/(highlight(5)*highlight(11)*highlight(p)*highlight(p)*highlight(p)*highlight(p)*highlight(p)*highlight(p)*highlight(z))}}} Highlight the common terms.



{{{(cross(5)*5*cross(11)*cross(p)*cross(p)*cross(p)*cross(p)*cross(p)*cross(p)*p*p*cross(z)*z*z)/(cross(5)*cross(11)*cross(p)*cross(p)*cross(p)*cross(p)*cross(p)*cross(p)*cross(z))}}} Cancel out the common terms.



{{{5*p*p*z*z}}} Simplify.



{{{5*p^2*z^2}}} Regroup.



So {{{((11z^3)/(5p^6))((25p^8)/(121z))}}} simplifies to {{{5*p^2*z^2}}}.



In other words, {{{((11z^3)/(5p^6))((25p^8)/(121z))=5*p^2*z^2}}} where {{{p<>0}}} or {{{z<>0}}}