Question 150457
{{{(8a^2b^3)/(3k)=4a}}} Start with the given equation.



{{{8a^2b^3=4a(3k)}}} Multiply both sides by {{{3k}}}.



{{{8a^2b^3=12ak}}} Multiply 4 and 3 to get 12



{{{8a^2b^3=12ak}}} Divide both sides by {{{12a}}}.



{{{(8a^2b^3)/(12a)=k}}} Divide both sides by {{{12a}}}.



{{{(2*2*2*a*a*b^3)/(12a)=k}}} Expand {{{8a^2}}} to get {{{2*2*2*a*a}}}



{{{(2*2*2*a*a*b^3)/(2*2*3*a)=k}}} Expand {{{12a}}} to get {{{2*2*3*a}}}



{{{(highlight(2)*highlight(2)*2*highlight(a)*a*b^3)/(highlight(2)*highlight(2)*3*highlight(a))=k}}} Highlight the common terms.



{{{(cross(2)*cross(2)*2*cross(a)*a*b^3)/(cross(2)*cross(2)*3*cross(a))=k}}} Cancel out the common terms.



{{{(2ab^3)/(3)=k}}} Simplify




So the answer is {{{k=(2ab^3)/(3)}}}