Question 150450
{{{15^2 + 4x- 5x + 5x^2+ 9}}} .... Start with the given expression



{{{225+ 4x- 5x + 5x^2+ 9}}} .... Square 15 to get 225



{{{(5x^2) + (4x-5x) + (225+9)}}} .... Group the common terms. In other words, group all of the terms with {{{x^2}}} together, group all of the {{{x}}} terms together, and group all of the constant terms together (ie terms with no variable).



{{{(5x^2) + (-x) + (225+9)}}}  .... Subtract {{{5x}}} from {{{4x}}} to get {{{-1x}}} or just {{{-x}}}



{{{(5x^2) + (-x) + (234)}}}  .... Add 225 and 9 to get 234



{{{5x^2 - x + 234}}} ... Remove the parenthesis (they no longer serve a purpose)



So the expression {{{15^2 + 4x- 5x + 5x^2+ 9}}} simplifies to {{{5x^2 - x + 234}}}



In other words, {{{15^2 + 4x-5x + 5x^2+ 9 = 5x^2-x + 234}}}