Question 149960
{{{3=e^(0.05x)}}} Start with the given equation.



{{{ln(3)=ln(e^(0.05x))}}} Take the natural log of both sides.



{{{ln(3)=(0.05x)*ln(e)}}} Rewrite the right side using the identity  {{{ln(x^y)=y*ln(x))}}}



{{{ln(3)=(0.05x)*(1)}}} Take the natural log of "e" to get 1 



{{{ln(3)=0.05x}}} Multiply.



{{{ln(3)/0.05=x}}} Divide both sides by 0.05.



So the solution is {{{x=ln(3)/0.05}}} which approximates to {{{x=21.97}}}