Question 149769
# 1



Let's simplify this expression using synthetic division



Start with the given expression {{{(3x^3 - x^2 - 4x + 1)/(x-1)}}}


First lets find our test zero:


{{{x-1=0}}} Set the denominator {{{x-1}}} equal to zero


{{{x=1}}} Solve for x.


so our test zero is 1



Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of the numerator to the right of the test zero.<TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 3)

<TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>3</TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

    Multiply 1 by 3 and place the product (which is 3)  right underneath the second  coefficient (which is -1)

    <TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>3</TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>3</TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

    Add 3 and -1 to get 2. Place the sum right underneath 3.

    <TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>3</TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>3</TD><TD>2</TD><TD></TD><TD></TD></TR></TABLE>

    Multiply 1 by 2 and place the product (which is 2)  right underneath the third  coefficient (which is -4)

    <TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>3</TD><TD>2</TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>3</TD><TD>2</TD><TD></TD><TD></TD></TR></TABLE>

    Add 2 and -4 to get -2. Place the sum right underneath 2.

    <TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>3</TD><TD>2</TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>3</TD><TD>2</TD><TD>-2</TD><TD></TD></TR></TABLE>

    Multiply 1 by -2 and place the product (which is -2)  right underneath the fourth  coefficient (which is 1)

    <TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>3</TD><TD>2</TD><TD>-2</TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>3</TD><TD>2</TD><TD>-2</TD><TD></TD></TR></TABLE>

    Add -2 and 1 to get -1. Place the sum right underneath -2.

    <TABLE cellpadding=10><TR><TD>1</TD><TD>|</TD><TD>3</TD><TD>-1</TD><TD>-4</TD><TD>1</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>3</TD><TD>2</TD><TD>-2</TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>3</TD><TD>2</TD><TD>-2</TD><TD>-1</TD></TR></TABLE>


Since the last column adds to -1, we have a remainder of -1. This means {{{x-1}}} is <b>not</b> a factor of  {{{3x^3 - x^2 - 4x + 1}}}

Now lets look at the bottom row of coefficients:


The first 3 coefficients (3,2,-2) form the quotient


{{{3x^2 + 2x - 2}}}


and the last coefficient -1, is the remainder, which is placed over {{{x-1}}} like this


{{{-1/(x-1)}}}




Putting this altogether, we get:


{{{3x^2 + 2x - 2+-1/(x-1)}}}


So {{{(3x^3 - x^2 - 4x + 1)/(x-1)=3x^2 + 2x - 2+-1/(x-1)}}}





<hr>


{{{18x+x^2-11x}}} Start with the given expression.



{{{x^2+7x}}} Combine like terms.



{{{x(x+7)}}} Factor out the GCF {{{x}}}




------------------------------------------------------------


Answer:

So {{{18x+x^2-11x}}} factors to {{{x(x+7)}}}




<hr>



# 3




Looking at {{{6x^2+x-2}}} we can see that the first term is {{{6x^2}}} and the last term is {{{-2}}} where the coefficients are 6 and -2 respectively.


Now multiply the first coefficient 6 and the last coefficient -2 to get -12. Now what two numbers multiply to -12 and add to the  middle coefficient 1? Let's list all of the factors of -12:




Factors of -12:

1,2,3,4,6,12


-1,-2,-3,-4,-6,-12 ...List the negative factors as well. This will allow us to find all possible combinations


These factors pair up and multiply to -12

(1)*(-12)

(2)*(-6)

(3)*(-4)

(-1)*(12)

(-2)*(6)

(-3)*(4)


note: remember, the product of a negative and a positive number is a negative number



Now which of these pairs add to 1? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 1


<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td align="center">1</td><td align="center">-12</td><td>1+(-12)=-11</td></tr><tr><td align="center">2</td><td align="center">-6</td><td>2+(-6)=-4</td></tr><tr><td align="center">3</td><td align="center">-4</td><td>3+(-4)=-1</td></tr><tr><td align="center">-1</td><td align="center">12</td><td>-1+12=11</td></tr><tr><td align="center">-2</td><td align="center">6</td><td>-2+6=4</td></tr><tr><td align="center">-3</td><td align="center">4</td><td>-3+4=1</td></tr></table>



From this list we can see that -3 and 4 add up to 1 and multiply to -12



Now looking at the expression {{{6x^2+x-2}}}, replace {{{x}}} with {{{-3x+4x}}} (notice {{{-3x+4x}}} adds up to {{{x}}}. So it is equivalent to {{{x}}})


{{{6x^2+highlight(-3x+4x)+-2}}}



Now let's factor {{{6x^2-3x+4x-2}}} by grouping:



{{{(6x^2-3x)+(4x-2)}}} Group like terms



{{{3x(2x-1)+2(2x-1)}}} Factor out the GCF of {{{3x}}} out of the first group. Factor out the GCF of {{{2}}} out of the second group



{{{(3x+2)(2x-1)}}} Since we have a common term of {{{2x-1}}}, we can combine like terms


So {{{6x^2-3x+4x-2}}} factors to {{{(3x+2)(2x-1)}}}



So this also means that {{{6x^2+x-2}}} factors to {{{(3x+2)(2x-1)}}} (since {{{6x^2+x-2}}} is equivalent to {{{6x^2-3x+4x-2}}})




------------------------------------------------------------




     Answer:

So {{{6x^2+x-2}}} factors to {{{(3x+2)(2x-1)}}}



<hr>


# 4




{{{12x^3+31x^2+20x}}} Start with the given expression



{{{x(12x^2+31x+20)}}} Factor out the GCF {{{x}}}



Now let's focus on the inner expression {{{12x^2+31x+20}}}





------------------------------------------------------------




Looking at {{{12x^2+31x+20}}} we can see that the first term is {{{12x^2}}} and the last term is {{{20}}} where the coefficients are 12 and 20 respectively.


Now multiply the first coefficient 12 and the last coefficient 20 to get 240. Now what two numbers multiply to 240 and add to the  middle coefficient 31? Let's list all of the factors of 240:




Factors of 240:

1,2,3,4,5,6,8,10,12,15,16,20,24,30,40,48,60,80,120,240


-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-16,-20,-24,-30,-40,-48,-60,-80,-120,-240 ...List the negative factors as well. This will allow us to find all possible combinations


These factors pair up and multiply to 240

1*240

2*120

3*80

4*60

5*48

6*40

8*30

10*24

12*20

15*16

(-1)*(-240)

(-2)*(-120)

(-3)*(-80)

(-4)*(-60)

(-5)*(-48)

(-6)*(-40)

(-8)*(-30)

(-10)*(-24)

(-12)*(-20)

(-15)*(-16)


note: remember two negative numbers multiplied together make a positive number



Now which of these pairs add to 31? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 31


<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td align="center">1</td><td align="center">240</td><td>1+240=241</td></tr><tr><td align="center">2</td><td align="center">120</td><td>2+120=122</td></tr><tr><td align="center">3</td><td align="center">80</td><td>3+80=83</td></tr><tr><td align="center">4</td><td align="center">60</td><td>4+60=64</td></tr><tr><td align="center">5</td><td align="center">48</td><td>5+48=53</td></tr><tr><td align="center">6</td><td align="center">40</td><td>6+40=46</td></tr><tr><td align="center">8</td><td align="center">30</td><td>8+30=38</td></tr><tr><td align="center">10</td><td align="center">24</td><td>10+24=34</td></tr><tr><td align="center">12</td><td align="center">20</td><td>12+20=32</td></tr><tr><td align="center">15</td><td align="center">16</td><td>15+16=31</td></tr><tr><td align="center">-1</td><td align="center">-240</td><td>-1+(-240)=-241</td></tr><tr><td align="center">-2</td><td align="center">-120</td><td>-2+(-120)=-122</td></tr><tr><td align="center">-3</td><td align="center">-80</td><td>-3+(-80)=-83</td></tr><tr><td align="center">-4</td><td align="center">-60</td><td>-4+(-60)=-64</td></tr><tr><td align="center">-5</td><td align="center">-48</td><td>-5+(-48)=-53</td></tr><tr><td align="center">-6</td><td align="center">-40</td><td>-6+(-40)=-46</td></tr><tr><td align="center">-8</td><td align="center">-30</td><td>-8+(-30)=-38</td></tr><tr><td align="center">-10</td><td align="center">-24</td><td>-10+(-24)=-34</td></tr><tr><td align="center">-12</td><td align="center">-20</td><td>-12+(-20)=-32</td></tr><tr><td align="center">-15</td><td align="center">-16</td><td>-15+(-16)=-31</td></tr></table>



From this list we can see that 15 and 16 add up to 31 and multiply to 240



Now looking at the expression {{{12x^2+31x+20}}}, replace {{{31x}}} with {{{15x+16x}}} (notice {{{15x+16x}}} adds up to {{{31x}}}. So it is equivalent to {{{31x}}})


{{{12x^2+highlight(15x+16x)+20}}}



Now let's factor {{{12x^2+15x+16x+20}}} by grouping:



{{{(12x^2+15x)+(16x+20)}}} Group like terms



{{{3x(4x+5)+4(4x+5)}}} Factor out the GCF of {{{3x}}} out of the first group. Factor out the GCF of {{{4}}} out of the second group



{{{(3x+4)(4x+5)}}} Since we have a common term of {{{4x+5}}}, we can combine like terms


So {{{12x^2+15x+16x+20}}} factors to {{{(3x+4)(4x+5)}}}



So this also means that {{{12x^2+31x+20}}} factors to {{{(3x+4)(4x+5)}}} (since {{{12x^2+31x+20}}} is equivalent to {{{12x^2+15x+16x+20}}})




------------------------------------------------------------





So our expression goes from {{{x(12x^2+31x+20)}}} and factors further to {{{x(3x+4)(4x+5)}}}



------------------

Answer:


So {{{12x^3+31x^2+20x}}} factors to {{{x(3x+4)(4x+5)}}}