Question 149317
{{{((a^2*b)/(b^2*a))((a*b-b^2)/(a*b-a^2))}}} Start with the given expression.



{{{((a^2*b)/(b^2*a))((b*(a-b))/(a*b-a^2))}}} Factor {{{a*b-b^2}}} to get {{{b*(a-b)}}}.



{{{((a^2*b)/(b^2*a))((b*(a-b))/(-a*(a-b)))}}} Factor {{{a*b-a^2}}} to get {{{-a*(a-b)}}}.



{{{(a^2*b*b*(a-b))/(b^2*a*(-a*(a-b)))}}} Combine the fractions. 



{{{(a^2*b^2*(a-b))/(-(b^2*a^2*(a-b)))}}} Multiply. 



{{{(highlight(a^2)*highlight(b^2)*highlight((a-b)))/(-(highlight(b^2)*highlight(a^2)*highlight((a-b))))}}} Highlight the common terms.



{{{(cross(a^2)*cross(b^2)*cross((a-b)))/(-(cross(b^2)*cross(a^2)*cross((a-b))))}}} Cancel out the common terms.



{{{-1}}} Simplify. 



So {{{((a^2*b)/(b^2*a))((a*b-b^2)/(a*b-a^2))}}} simplifies to {{{-1}}}.