Question 149240
First, we need to find the vertical asymptote(s)


<b> Vertical Asymptote: </b>

To find the vertical asymptote, just set the denominator equal to zero and solve for x


{{{x-7=0}}} Set the denominator equal to zero



{{{x=0+7}}}Add 7 to both sides



{{{x=7}}} Combine like terms on the right side



So the vertical asymptote is {{{x=7}}}


--------------------


Now we need to find any x-intercepts



{{{y=(x-4)/(x-7)}}} Start with the given equation



{{{0=(x-4)/(x-7)}}} Plug in {{{y=0}}}



{{{0=x-4}}} Multiply both sides by {{{x-7}}}.



{{{4=x}}} Add 4 to both sides.



So the x-intercept is (4,0)



---------------


This means that we'll have to test three regions



Region 1: 


This region is from negative infinity to the x-intercept {{{x=4}}}


So let's test the value {{{x=0}}}


{{{y=(x-4)/(x-7)}}} Start with the given equation



{{{y=(0-4)/(0-7)}}} Plug in {{{x=0}}}



{{{y=4/7}}} Simplify.

   

Since {{{4/7}}} is greater than or equal to zero, this means that <font size=4><b>every</b></font> point in the interval <font size="6">(</font>*[Tex \LARGE -\infty,4]<font size="6">]</font> is above the x-axis.


So the interval <font size="6">(</font>*[Tex \LARGE -\infty,4]<font size="6">]</font> is part of the solution to the inequality {{{(x-4)/(x-7)>=0}}}


-----------



Region 2: 


This region is from the x-intercept {{{x=4}}} to the vertical asymptote {{{x=7}}}


So let's test the value {{{x=5}}}


{{{y=(x-4)/(x-7)}}} Start with the given equation



{{{y=(5-4)/(5-7)}}} Plug in {{{x=5}}}



{{{y=-1/2}}} Simplify.

   

Since {{{-1/2}}} is <font size=4><b>not</b></font> greater than or equal to zero, this means that <font size=4><b>every</b></font> point in the interval <font size="6">(</font>*[Tex \LARGE 4,7]<font size="6">)</font> is below the x-axis.


So the interval <font size="6">(</font>*[Tex \LARGE 4,7]<font size="6">)</font> is <font size=4><b>not</b></font> part of the solution to the inequality {{{(x-4)/(x-7)>=0}}}




-----------



Region 3: 


This region is from the vertical asymptote {{{x=7}}} to positive infinity


So let's test the value {{{x=8}}}


{{{y=(x-4)/(x-7)}}} Start with the given equation



{{{y=(8-4)/(8-7)}}} Plug in {{{x=8}}}



{{{y=4}}} Simplify.

   

Since {{{4}}} is greater than or equal to zero, this means that <font size=4><b>every</b></font> point in the interval <font size="6">(</font>*[Tex \LARGE 4,7]<font size="6">)</font> is above the x-axis.


So the interval <font size="6">(</font>*[Tex \LARGE 7,\infty]<font size="6">)</font> is  part of the solution to the inequality {{{(x-4)/(x-7)>=0}}}



So that means that the solution is


<font size="6">(</font>*[Tex \LARGE -\infty,4]<font size="6">]</font>*[Tex \LARGE \cup]<font size="6">(</font>*[Tex \LARGE 7,\infty]<font size="6">)</font>