Question 148869
# 1

<font size=4><b>GCF:</b></font>

First, find the prime factorization of each term:



{{{48}}}: {{{2*2*2*2*3}}}



{{{80}}}: {{{2*2*2*2*5}}}



Now highlight the common terms:



{{{48}}}: {{{highlight(2)*highlight(2)*highlight(2)*highlight(2)*3}}}



{{{80}}}: {{{highlight(2)*highlight(2)*highlight(2)*highlight(2)*5}}}



So the common terms are 2, 2, 2, and 2



Now simply multiply all of the common terms together to get {{{2*2*2*2=16}}}



So the GCF is {{{16}}}.


<hr>


# 2


<font size=4><b>GCF:</b></font>

First, find the prime factorization of each term:



{{{42}}}: {{{2*3*7}}}



{{{66}}}: {{{2*3*11}}}



{{{78}}}: {{{2*3*13}}}



Now highlight the common terms:



{{{42}}}: {{{highlight(2)*highlight(3)*7}}}



{{{66}}}: {{{highlight(2)*highlight(3)*11}}}



{{{78}}}: {{{highlight(2)*highlight(3)*13}}}



So the common terms are 2 and 3



Now simply multiply all of the common terms together to get {{{2*3=6}}}



So the GCF of {{{42}}}, {{{66}}}, and {{{78}}} is {{{6}}}.



<hr>


# 3


<font size=4><b>GCF:</b></font>

First, find the prime factorization of each term:



{{{6y^2}}}: {{{2*3*y*y}}}



{{{15y^3}}}: {{{3*5*y*y*y}}}



Now highlight the common terms:



{{{6y^2}}}: {{{2*highlight(3)*highlight(y)*highlight(y)}}}



{{{15y^3}}}: {{{highlight(3)*5*highlight(y)*highlight(y)*y}}}



So the common terms are 3, y, and y



Now simply multiply all of the common terms together to get {{{3*y*y=3y^2}}}



So the GCF of {{{6y^2}}} and {{{15y^3}}} is {{{3y^2}}}.



<hr>



# 4


<font size=4><b>GCF:</b></font>

First, find the prime factorization of each term:



{{{12a^2b}}}: {{{2*2*3*a*a*b}}}



{{{18ab^2}}}: {{{2*3*3*a*b*b}}}



{{{24a^3b^3}}}: {{{2*2*2*3*a*a*a*b*b*b}}}



Now highlight the common terms:



{{{12a^2b}}}: {{{highlight(2)*2*highlight(3)*highlight(a)*a*highlight(b)}}}



{{{18ab^2}}}: {{{highlight(2)*highlight(3)*3*highlight(a)*highlight(b)*b}}}



{{{24a^3b^3}}}: {{{highlight(2)*2*2*highlight(3)*highlight(a)*a*a*highlight(b)*b*b}}}



So the common terms are 2, 3, a, and b



Now simply multiply all of the common terms together to get {{{2*3*a*b=6ab}}}



So the GCF of {{{12a^2b}}}, {{{18ab^2}}}, and {{{24a^3b^3}}} is {{{6ab}}}.