Question 148860




1)



{{{5x^2-10x}}} Start with the given expression



{{{5x(x-2)}}} Factor out the GCF {{{5x}}}.


<hr>


2) 

Correct. You can check the answer by distributing



<hr>


3) 



Good so far, but can factor {{{a^2-b^2}}} into {{{(a+b)(a-b)}}}


So {{{3a^3b-3ab^3}}} completely factors to {{{3ab(a+b)(a-b)}}}



<hr>


4)




Looking at the expression {{{a^2+2a-24}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{2}}}, and the last term is {{{-24}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-24}}} to get {{{(1)(-24)=-24}}}.



Now the question is: what two whole numbers multiply to {{{-24}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-24}}} (the previous product).



Factors of {{{-24}}}:

1,2,3,4,6,8,12,24

-1,-2,-3,-4,-6,-8,-12,-24



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-24}}}. For instance, {{{1*24=-24}}}, {{{2*12=-24}}}, etc.



Since {{{-24}}} is negative, this means that one factor is positive and one is negative.



Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center">1</td><td  align="center">-24</td><td  align="center">1+(-24)=-23</td></tr><tr><td  align="center">2</td><td  align="center">-12</td><td  align="center">2+(-12)=-10</td></tr><tr><td  align="center">3</td><td  align="center">-8</td><td  align="center">3+(-8)=-5</td></tr><tr><td  align="center">4</td><td  align="center">-6</td><td  align="center">4+(-6)=-2</td></tr><tr><td  align="center">-1</td><td  align="center">24</td><td  align="center">-1+24=23</td></tr><tr><td  align="center">-2</td><td  align="center">12</td><td  align="center">-2+12=10</td></tr><tr><td  align="center">-3</td><td  align="center">8</td><td  align="center">-3+8=5</td></tr><tr><td  align="center">-4</td><td  align="center">6</td><td  align="center">-4+6=2</td></tr></table>



From the table, we can see that the two numbers {{{-4}}} and {{{6}}} add to {{{2}}} (the middle coefficient).



So the two numbers {{{-4}}} and {{{6}}} both multiply to {{{-24}}} <font size=4><b>and</b></font> add to {{{2}}}



Now replace the middle term {{{2a}}} with {{{-4a+6a}}}. Remember, {{{-4}}} and {{{6}}} add to {{{2}}}. So this shows us that {{{-4a+6a=2a}}}.



{{{a^2+highlight(-4a+6a)-24}}} Replace the second term {{{2a}}} with {{{-4a+6a}}}.



{{{(a^2-4a)+(6a-24)}}} Group the terms into two pairs.



{{{a(a-4)+(6a-24)}}} Factor out the GCF {{{a}}} from the first group.



{{{a(a-4)+6(a-4)}}} Factor out {{{6}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(a+6)(a-4)}}} Combine like terms. Or factor out the common term {{{a-4}}}


---------------------------------------------



Answer:



So {{{a^2+2a-24}}} factors to {{{(a+6)(a-4)}}}.



Note: you can check the answer by FOILing {{{(a+6)(a-4)}}} to get {{{a^2+2a-24}}} or by graphing the original expression and the answer (the two graphs should be identical).



<hr>


5)




Looking at the expression {{{4b^2-28b+49}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-28}}}, and the last term is {{{49}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{49}}} to get {{{(4)(49)=196}}}.



Now the question is: what two whole numbers multiply to {{{196}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-28}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{196}}} (the previous product).



Factors of {{{196}}}:

1,2,4,7,14,28,49,98,196

-1,-2,-4,-7,-14,-28,-49,-98,-196



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{196}}}. For instance, {{{1*196=196}}}, {{{2*98=196}}}, etc.



Since {{{196}}} is positive, this means that either

a) both factors are positive, or...
b) both factors are negative.



Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-28}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center">1</td><td  align="center">196</td><td  align="center">1+196=197</td></tr><tr><td  align="center">2</td><td  align="center">98</td><td  align="center">2+98=100</td></tr><tr><td  align="center">4</td><td  align="center">49</td><td  align="center">4+49=53</td></tr><tr><td  align="center">7</td><td  align="center">28</td><td  align="center">7+28=35</td></tr><tr><td  align="center">14</td><td  align="center">14</td><td  align="center">14+14=28</td></tr><tr><td  align="center">-1</td><td  align="center">-196</td><td  align="center">-1+(-196)=-197</td></tr><tr><td  align="center">-2</td><td  align="center">-98</td><td  align="center">-2+(-98)=-100</td></tr><tr><td  align="center">-4</td><td  align="center">-49</td><td  align="center">-4+(-49)=-53</td></tr><tr><td  align="center">-7</td><td  align="center">-28</td><td  align="center">-7+(-28)=-35</td></tr><tr><td  align="center">-14</td><td  align="center">-14</td><td  align="center">-14+(-14)=-28</td></tr></table>



From the table, we can see that the two numbers {{{-14}}} and {{{-14}}} add to {{{-28}}} (the middle coefficient).



So the two numbers {{{-14}}} and {{{-14}}} both multiply to {{{196}}} <font size=4><b>and</b></font> add to {{{-28}}}



Now replace the middle term {{{-28b}}} with {{{-14b-14b}}}. Remember, {{{-14}}} and {{{-14}}} add to {{{-28}}}. So this shows us that {{{-14b-14b=-28b}}}.



{{{4b^2+highlight(-14b-14b)+49}}} Replace the second term {{{-28b}}} with {{{-14b-14b}}}.



{{{(4b^2-14b)+(-14b+49)}}} Group the terms into two pairs.



{{{2b(2b-7)+(-14b+49)}}} Factor out the GCF {{{2b}}} from the first group.



{{{2b(2b-7)-7(2b-7)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2b-7)(2b-7)}}} Combine like terms. Or factor out the common term {{{2b-7}}}



{{{(2b-7)^2}}} Collect and condense the terms.


---------------------------------------------



Answer:



So {{{4b^2-28b+49}}} factors to {{{(2b-7)^2}}}.



Note: you can check the answer by FOILing {{{(2b-7)^2}}} to get {{{4b^2-28b+49}}} or by graphing the original expression and the answer (the two graphs should be identical).



<hr>



6) Correct. You can check the answer by distributing