Question 148161
{{{(f/g)(x)=(f(x))/(g(x))}}} Start with the given property



{{{(f(x))/(g(x))=(1-x^2)/(1-x)}}} Plug in {{{f(x)=1-x^2}}} and {{{g(x)=1-x}}}



{{{(f(x))/(g(x))=((1-x)(1+x))/(1-x)}}} Factor the numerator.



{{{(f(x))/(g(x))=(highlight((1-x))(1+x))/highlight((1-x))}}} Highlight the common terms.



{{{(f(x))/(g(x))=(cross((1-x))(1+x))/cross((1-x))}}} Cancel out the common terms.



{{{(f(x))/(g(x))=1+x}}} Simplify



{{{(f(x))/(g(x))=x+1}}} Rearrange the terms.