Question 147982
{{{((2x^64)/(8y))/((x^2y)/(8y^3))}}} Start with the given expression.



{{{((2x^64)/(8y))((8y^3)/(x^2y))}}} Multiply the first fraction {{{(2x^64)/(8y)}}} by the reciprocal of the second fraction {{{(x^2y)/(8y^3)}}}.



{{{((2x^64)(8y^3))/((8y)(x^2y))}}} Combine the fractions.



{{{(16x^64y^3)/(8x^2y^2)}}} Multiply.



{{{(2x^64y^3)/(x^2y^2)}}} Divide the coefficients {{{16}}} and {{{8}}} to get {{{2}}}



{{{2x^(64-2)y^(3-2)}}} When you divide monomials, simply subtract the exponents.



{{{2x^62y}}} Subtract.



So {{{((2x^64)/(8y))/((x^2y)/(8y^3))}}} simplifies to {{{2x^62y}}}