Question 147610
{{{ln(x+3)+ln(4)=ln(40)}}} Start with the given equation.



{{{ln((x+3)(4))=ln(40)}}} Combine the logs using the identity {{{ln(A)+ln(B)=ln(A*B)}}}.



{{{ln(4x+12)=ln(40)}}} Distribute.



{{{4x+12=40}}} Since the logs are equal with the same base, this means that the arguments are equal.



{{{4x=40-12}}} Subtract {{{12}}} from both sides.



{{{4x=28}}} Combine like terms on the right side.



{{{x=(28)/(4)}}} Divide both sides by {{{4}}} to isolate {{{x}}}.



{{{x=7}}} Reduce.



----------------------------------------------------------------------


Answer:


So the answer is {{{x=7}}}