Question 147385
{{{(w+g)(w^2-w*g+g^2)}}} Start with the given expression.



{{{w(w^2-w*g+g^2)+g(w^2-w*g+g^2)}}} Expand.



{{{(w)*(w^2)+(w)*(-w*g)+(w)*(g^2)+(g)*(w^2)+(g)*(-w*g)+(g)*(g^2)}}} Distribute.



{{{w^3-w^2*g+w*g^2+w^2*g-w*g^2+g^3}}} Multiply.



{{{w^3+g^3}}} Now combine like terms.



 So {{{(w+g)(w^2-w*g+g^2)}}} expands and simplifies to {{{w^3+g^3}}}.



In other words, {{{(w+g)(w^2-w*g+g^2)=w^3+g^3}}}.