Question 147361
{{{(-x^2y)/((-x^2)^2y^2))}}} Start with the given expression.



{{{(-x^2y)/(x^4y^2))}}} Rewrite {{{(-x^2)^2}}} as {{{(-x^2)(-x^2)=-1*-1*x^(2+2)=x^4}}}




{{{-x^(2-4)y^(1-2)}}} When you divide monomials, simply subtract the exponents.



{{{-x^(-2)y^(-1)}}} Subtract.



{{{(-1)/(x^(2)y^(1))}}} Rewrite the expression with positive exponents by flipping the fractions.



{{{(-1)/(x^(2)y)}}} Simplify.



So {{{(-x^2y)/((-x^2)^2y^2)=(-1)/(x^(2)y)}}} where {{{x<>0}}} or {{{y<>0}}}