Question 146995


{{{(x^2-7x+12)/(x^2-16)}}} Start with the given expression.



{{{((x-3)*(x-4))/(x^2-16)}}} Factor {{{x^2-7x+12}}} to get {{{(x-3)*(x-4)}}}.



{{{((x-3)*(x-4))/((x-4)*(x+4))}}} Factor {{{x^2-16}}} to get {{{(x-4)*(x+4)}}}.



{{{((x-3)highlight(x-4))/(highlight(x-4)(x+4))}}} Highlight the common terms. 



{{{((x-3)cross(x-4))/(cross(x-4)(x+4))}}} Cancel out the common terms. 



{{{((x-3))/((x+4))}}} Simplify. 



So {{{(x^2-7x+12)/(x^2-16)}}} simplifies to {{{((x-3))/((x+4))}}}.



In other words, {{{(x^2-7x+12)/(x^2-16)=((x-3))/((x+4))}}} where {{{x<>-4}}} or {{{x<>4}}}