Question 142943

{{{(6x^4-2)(x^5-7)}}} Start with the given expression



Now let's FOIL the expression




Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(6x^4)-2)(highlight(x^5)-7)}}} Multiply the First terms:{{{(6x^4)*(x^5)=6x^9}}}



{{{(highlight(6x^4)-2)(x^5+highlight(-7))}}} Multiply the Outer terms:{{{(6x^4)*(-7)=-42x^4}}}



{{{(6x^4+highlight(-2))(highlight(x^5)-7)}}} Multiply the Inner terms:{{{(-2)*(x^5)=-2x^5}}}



{{{(6x^4+highlight(-2))(x^5+highlight(-7))}}} Multiply the Last terms:{{{(-2)*(-7)=14}}}



{{{6x^9-42x^4-2x^5+14}}} Now collect every term to make a single expression




---------------------

Answer:

So {{{(6x^4-2)(x^5-7)}}} foils and simplifies to  {{{6x^9-42x^4-2x^5+14}}}


In other words, {{{(6x^4-2)(x^5-7)=6x^9-42x^4-2x^5+14}}}