Question 142359
{{{sqrt(8)*sqrt(12)}}} Start with the given expression



{{{sqrt(8*12)}}} Combine the square roots. Remember {{{sqrt(x)*sqrt(y)=sqrt(x*y)}}}



{{{sqrt(96)}}} Multiply




{{{sqrt(16*6)}}} Factor 96 into 16*6
 


{{{sqrt(16)*sqrt(6)}}} Break up the square roots using the identity {{{sqrt(x*y)=sqrt(x)*sqrt(y)}}}
 


{{{4*sqrt(6)}}} Take the square root of the perfect square 16 to get 4 
 


So the expression {{{sqrt(8)*sqrt(12)}}} simplifies to {{{4*sqrt(6)}}}