Question 141286
{{{x+2*y=4}}} Start with the given equation


Let's find the x-intercept


To find the x-intercept, let y=0 and solve for x:

{{{x+2*(0)=4}}} Plug in {{{y=0}}}



{{{x=4}}} Simplify





So the x-intercept is *[Tex \Large \left(4,0\right)] (note: the x-intercept will always have a y-coordinate equal to zero)




------------------


{{{x+2*y=4}}} Start with the given equation


Now let's find the y-intercept


To find the y-intercept, let x=0 and solve for y:

{{{(0)+2*y=4}}} Plug in {{{x=0}}}


{{{2*y=4}}} Simplify


{{{x=4/2}}} Divide both sides by 2




{{{y=2}}} Reduce




So the y-intercept is *[Tex \Large \left(0,2\right)] (note: the y-intercept will always have a x-coordinate equal to zero)


------------------------------------------


So we have these intercepts:

x-intercept: *[Tex \Large \left(4,0\right)]


y-intercept: *[Tex \Large \left(0,2\right)]




Now plot the two points *[Tex \Large \left(4,0\right)] and *[Tex \Large \left(0,2\right)] 


{{{drawing(500, 500, -6, 6, -4, 4,
graph(500, 500, -6, 6, -4, 4,0),
circle(4,0,0.0666666666666667),
circle(4,0,0.0966666666666667),

circle(0,2,0.0666666666666667),
circle(0,2,0.0966666666666667)


)}}}



Now draw a line through the two points to graph {{{x+2*y=4}}}

{{{drawing(500, 500, -6, 6, -4, 4,
graph(500, 500, -6, 6, -4, 4,(4-x)/2),
circle(4,0,0.0666666666666667),
circle(4,0,0.0966666666666667),

circle(0,2,0.0666666666666667),
circle(0,2,0.0966666666666667)


)}}} graph of {{{x+2*y=4}}} through the points *[Tex \Large \left(4,0\right)] and *[Tex \Large \left(0,2\right)]