Question 139506
Use these rules:


{{{root(n,a)*root(n,b)=root(n,ab)}}}


{{{root(n,a)/root(n,b)=root(n,a/b)}}}


{{{root(2,a)=sqrt(a)}}}, i.e. {{{n=2}}}


If n is even, that is n modulo 2 is 0, then the radicand must be positive if you are restricted to the real numbers.


{{{(a+sqrt(b))(a-sqrt(b))=a^2-b}}}


{{{a*1=a}}}, but {{{b/b=1}}}, so if {{{a=p/q}}} then {{{(p/q)(b/b)=a}}}


{{{a^(n/m)=root(m,a^n)}}}