Question 138824
*[Tex \LARGE \sin^2\left(\frac{\theta}{2}\right)-\sin^2\left(\theta\right)=0 ] Start with the given equation




Let *[Tex \LARGE u=\frac{\theta}{2}]. So this means that *[Tex \LARGE 2u=2*\frac{\theta}{2}=\theta]




*[Tex \LARGE \sin^2\left(u\right)-\sin^2\left(2u\right)=0  ] Replace *[Tex \LARGE \frac{\theta}{2}] with u and *[Tex \LARGE \theta] with 2u



*[Tex \LARGE \sin^2\left(u\right)-\left(\sin\left(2u\right)\right)^2=0  ] Rewrite *[Tex \LARGE \sin^2\left(2u\right)] as *[Tex \LARGE \left(\sin\left(2u\right)\right)^2]



*[Tex \LARGE \sin^2\left(u\right)-\left(2\sin\left(u\right)\cos\left(u\right)\right)^2=0 ] Replace *[Tex \LARGE \sin\left(2u\right)] with *[Tex \LARGE 2\sin\left(u\right)\cos\left(u\right)]






*[Tex \LARGE \sin^2\left(u\right)-4\sin^2\left(u\right)\cos^2\left(u\right)=0 ] Square *[Tex \LARGE 2\sin\left(u\right)\cos\left(u\right)]




*[Tex \LARGE \sin^2\left(u\right)\left(1-4\cos^2\left(u\right)\right)=0 ] Factor out *[Tex \LARGE \sin^2\left(u\right)]




Now use the zero product property:



*[Tex \LARGE \sin^2\left(u\right)=0]  ...or...  *[Tex \LARGE 1-4\cos^2\left(u\right)=0 ]



Now let's solve *[Tex \LARGE \sin^2\left(u\right)=0]: 



*[Tex \LARGE \sin^2\left(u\right)=0 ]



*[Tex \LARGE \sin\left(u\right)=0 ] Take the square root of both sides



*[Tex \LARGE u=0]  ...or...  *[Tex \LARGE u=\pi ] Take the arcsine of both sides



Since *[Tex \LARGE u=\frac{\theta}{2}], this means



*[Tex \LARGE \theta=0]  ...or...  *[Tex \LARGE \theta=2\pi ]




However, since  *[Tex \LARGE 2\pi ] is not in the interval [0,2*[Tex \large \pi ]), it is not a solution.



So the first solution is *[Tex \LARGE \theta=0]




--------------------------------------------------------------------


Now let's solve *[Tex \LARGE  1-4\cos^2\left(u\right)=0 ]:



*[Tex \LARGE  1-4\cos^2\left(u\right)=0 ]



*[Tex \LARGE  -4\cos^2\left(u\right)=-1 ] Subtract 1 from both sides



*[Tex \LARGE  \cos^2\left(u\right)=\frac{1}{4} ] Divide both sides by -4



Take the square root of both sides:

*[Tex \LARGE  \cos\left(u\right)=\frac{1}{2}]  ...or...  *[Tex \LARGE \cos\left(u\right)=-\frac{1}{2} ] 



So let's solve the first part *[Tex \LARGE \cos\left(u\right)=\frac{1}{2} ]:


*[Tex \LARGE \cos\left(u\right)=\frac{1}{2} ]




*[Tex \LARGE u=\frac{\pi}{3}]  ...or...  *[Tex \LARGE u=-\frac{\pi}{3} ]



*[Tex \LARGE \theta=\frac{2\pi}{3}]  ...or...  *[Tex \LARGE \theta=-\frac{2\pi}{3} ]



However since our interval is positive, the negative answer is not in the interval.



So another part of the solution is *[Tex \LARGE \theta=\frac{2\pi}{3}]




---------------------



Now let's solve the second part *[Tex \LARGE \cos\left(u\right)=-\frac{1}{2} ]:



*[Tex \LARGE \cos\left(u\right)=-\frac{1}{2} ]




*[Tex \LARGE u=\frac{2\pi}{3}]  ...or...  *[Tex \LARGE u=-\frac{2\pi}{3} ]



*[Tex \LARGE \theta=\frac{4\pi}{3}]  ...or...  *[Tex \LARGE \theta=-\frac{4\pi}{3} ]




So another part of the solution is *[Tex \LARGE \theta=\frac{4\pi}{3}]





===============================================


Answer:



So all together our solutions are:


*[Tex \LARGE \theta=0,\theta=\frac{2\pi}{3}, \hspace {12} \textrm{or} \hspace {12} \theta=\frac{4\pi}{3}]