Question 138648


Remember, if {{{f(x)=f(-x)}}} then the function is an even function. If {{{f(-x)=-f(x)}}} then the function is an odd function.




First, let's see if {{{f(x)=x^2-6x+9}}} is an even function.



{{{f(x)=x^2-6x+9}}} Start with the given function.



{{{f(-x)=(-x)^2-6(-x)+9}}} Replace each x with -x.



{{{f(-x)=x^2+6x+9}}} Simplify. Note: only the terms with an <b>odd</b> exponent will change in sign.




Since {{{f(x)<>f(-x)}}}, this shows us that {{{f(x)=x^2-6x+9}}} is <b>not</b> an even function.



------------------------



Now, let's see if {{{f(x)=x^2-6x+9}}} is an odd function.


{{{f(x)=x^2-6x+9}}} Start with the given function.



{{{-f(x)=-(x^2-6x+9)}}} Negate the entire function by placing a negative outside the function.



{{{-f(x)=-x^2+6x-9}}} Distribute and simplify.





Since {{{f(-x)<>-f(x)}}}, this shows us that {{{f(x)=x^2-6x+9}}} is <b>not</b> an odd function.




--------------------------

Answer:


So the function {{{f(x)=x^2-6x+9}}} is neither an even nor odd function.