Question 999307:  2x + 3z  =  4  
3y + 2z  =  5  
3x + 4y  =  −16  
 
 
(x, y, z) =  
  
 
 
2x + 4y − 2z  =  14  
x + 3y + 4z  =  10  
x + 2y − z  =  18  
 
 
(x, y, z) =  
  
  
 
4x + 5y + z  =  24  
2x − y + 2z  =  29  
x + 2y + 2z  =  21  
 
 
(x, y, z) = 
 
 Solve by the addition method. 
 
4x − y + z  =  9   
3x + 2y + z  =  5   
x − 2y + 3z  =  15  
 (x,y,z) 
 
 
3x − 3y + 4z  =  6  
4x − 5y + 2z  =  10  
x − 2y + 3z  =  4  
 
 
(x, y, z) =  
  
 
 
 
 
5x + 3y − z  =  3  
3x − 2y + 4z  =  21  
4x + 3y + 5z  =  32  
 
 
(x, y, z) =  
  
 
 
 
 Answer by Alan3354(69443)      (Show Source): 
You can  put this solution on YOUR website! 2x + 4y − 2z = 14  
 x + 3y + 4z = 10  
 x + 2y − z = 18 
================= 
 x + 3y + 4z = 10  
 x + 2y − z = 18 
------------------------- Subtract 
y + 5z = -8  Eqn A 
==================== 
2x + 4y − 2z = 14  
2x + 6y + 8z = 20 -- 2nd eqn times 2 
--------------------------- Subtract 
-2y - 10z = -6 
-2y - 10z = 16  Eqn A times -2 
----------------------- Subtract 
0 = -22 --> inconsistent, no solution 
============================================== 
These are all the same problem, just different numbers. 
Do them like that. 
  | 
 
  
 
 |   
 
 |