Question 999307: 2x + 3z = 4
3y + 2z = 5
3x + 4y = −16
(x, y, z) =
2x + 4y − 2z = 14
x + 3y + 4z = 10
x + 2y − z = 18
(x, y, z) =
4x + 5y + z = 24
2x − y + 2z = 29
x + 2y + 2z = 21
(x, y, z) =
Solve by the addition method.
4x − y + z = 9
3x + 2y + z = 5
x − 2y + 3z = 15
(x,y,z)
3x − 3y + 4z = 6
4x − 5y + 2z = 10
x − 2y + 3z = 4
(x, y, z) =
5x + 3y − z = 3
3x − 2y + 4z = 21
4x + 3y + 5z = 32
(x, y, z) =
Answer by Alan3354(69443) (Show Source):
You can put this solution on YOUR website! 2x + 4y − 2z = 14
x + 3y + 4z = 10
x + 2y − z = 18
=================
x + 3y + 4z = 10
x + 2y − z = 18
------------------------- Subtract
y + 5z = -8 Eqn A
====================
2x + 4y − 2z = 14
2x + 6y + 8z = 20 -- 2nd eqn times 2
--------------------------- Subtract
-2y - 10z = -6
-2y - 10z = 16 Eqn A times -2
----------------------- Subtract
0 = -22 --> inconsistent, no solution
==============================================
These are all the same problem, just different numbers.
Do them like that.
|
|
|