SOLUTION: Multiply 8(cos 35° + i sin 35°) and 8(cos 50° + i sin 50°). Can you please explain how to do this step by step? Thank You.

Algebra ->  Trigonometry-basics -> SOLUTION: Multiply 8(cos 35° + i sin 35°) and 8(cos 50° + i sin 50°). Can you please explain how to do this step by step? Thank You.      Log On


   



Question 996072: Multiply 8(cos 35° + i sin 35°) and 8(cos 50° + i sin 50°). Can you please explain how to do this step by step? Thank You.
Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
Rule:
If
z1 = r1 * [ cos(theta1)+i*sin(theta1) ]
z2 = r2 * [ cos(theta2)+i*sin(theta2) ]
Then
z1*z2 = (r1*r2) * [ cos(theta1+theta2)+i*sin(theta1+theta2) ]

In plain English:
multiply the r values out front; add the angles

--------------------------------------------------------------------------------------------------------------
In this case,

z1 = 8(cos 35° + i sin 35°)
z2 = 8(cos 50° + i sin 50°)

Using the rule above, we get
z1*z2 = (8*8)* [ cos(35°+50°) + i*sin(35°+50°) ]
z1*z2 = 64 * [cos(85°) + i*sin(85°)]

So the final answer is 64 * [cos(85°) + i*sin(85°)]