SOLUTION: What is the smallest value of {{{ f }}} that statisfies {{{ a^2+b^2+c^2+d^2=f^2 }}}, given that {{{ a }}}, {{{ b }}}, {{{ c }}}, {{{ d }}}, {{{ e }}} and {{{ f }}} are all positive

Algebra ->  Exponents -> SOLUTION: What is the smallest value of {{{ f }}} that statisfies {{{ a^2+b^2+c^2+d^2=f^2 }}}, given that {{{ a }}}, {{{ b }}}, {{{ c }}}, {{{ d }}}, {{{ e }}} and {{{ f }}} are all positive      Log On


   



Question 992609: What is the smallest value of +f+ that statisfies +a%5E2%2Bb%5E2%2Bc%5E2%2Bd%5E2=f%5E2+, given that +a+, +b+, +c+, +d+, +e+ and +f+ are all positive integers, not necessarily different?
Answer by ankor@dixie-net.com(22740) About Me  (Show Source):
You can put this solution on YOUR website!
What is the smallest value of +f+ that statisfies +a%5E2%2Bb%5E2%2Bc%5E2%2Bd%5E2=f%5E2+, given that +a+, +b+, +c+, +d+, +e+ and +f+ are all positive integers, not necessarily different?
:
How about f = 7
1%5E2+%2B+2%5E2+%2B+2%5E2+%2B+2%5E2+%2B+6%5E2+=+7%5E2