SOLUTION: Solve the system: -x-y-2z=9 -2x-2y-z=1 -x-y+z=-10

Algebra ->  Equations -> SOLUTION: Solve the system: -x-y-2z=9 -2x-2y-z=1 -x-y+z=-10      Log On


   



Question 992502: Solve the system:
-x-y-2z=9
-2x-2y-z=1
-x-y+z=-10

Answer by ikleyn(52776) About Me  (Show Source):
You can put this solution on YOUR website!
.
- x - y -2z =   9,     (1)
-2x -2y - z =   1,     (2)
- x - y + z = -10.     (3)


Distract equation  (1)  from  equatin (3).  You will get

3z = -10 -9 = -19.     (4)


Now multiply equation  (3)  by  2  and then distract the equation  (2).  You will get

3z = 2*(-10) - 1 = -20 -1 = -21.     (5)


You have two equations for  z,  (4)  and  (5),  and they are inconsistent.


Hence,  the original system is inconsistent.


Answer.  This system has no solutions.



By the way,  the determinant of the system is equal to zero.