SOLUTION: Write an equation in slope-intercept form of the line that is perpendicular to the graph of y=3x+17 and passes through (-7,4)

Algebra ->  Graphs -> SOLUTION: Write an equation in slope-intercept form of the line that is perpendicular to the graph of y=3x+17 and passes through (-7,4)      Log On


   



Question 99195: Write an equation in slope-intercept form of the line that is perpendicular to the graph of y=3x+17 and passes through (-7,4)
Answer by checkley71(8403) About Me  (Show Source):
You can put this solution on YOUR website!
Y=mX+b WHERE X&Y ARE ONE SET OF COORDINATES, m=SLOPE & b=THE Y INTERCEPT.
--------------------------------------------------------------------------
--------------------------------------------------------------------------
Y=3X+17 (RED LINE)
THIS LINE HAS A SLOPE=3 THUS A LINE PERPENDICULAR HAS A SLOPE OF -1/3.
NOW REPLACE THE X & Y TERMS WITH (-7,4) & SOLVE FOR THE Y INTERCEPT
4=-1/3*-7+b
4=7/3+b
b=4-7/3
b=(12-7)/3
b=5/3 FOR THE Y INTERCEPT. THUS THE LINE EQUATION IS:
Y=-X/3+5/3 (GREEN LINE)
+graph%28+300%2C+200%2C+-6%2C+5%2C+-10%2C+10%2C+y+=+3x+%2B17%2C+y+=+-x%2F3+%2B5%2F3%29+ (graph 300x200 pixels, x from -6 to 5, y from -10 to 10, of TWO functions y = 3x +17 and y = -x/3 +5/3).