SOLUTION: My question: Jo's garden plot is in the form of a right triangle,and she wants to put a fence around its perimeter. The legs of the right triangle measure 8 feet and 15 feet. How m

Algebra ->  Triangles -> SOLUTION: My question: Jo's garden plot is in the form of a right triangle,and she wants to put a fence around its perimeter. The legs of the right triangle measure 8 feet and 15 feet. How m      Log On


   



Question 986979: My question: Jo's garden plot is in the form of a right triangle,and she wants to put a fence around its perimeter. The legs of the right triangle measure 8 feet and 15 feet. How many feet of fencing will Jo need to buy?
Found 2 solutions by macston, ikleyn:
Answer by macston(5194) About Me  (Show Source):
You can put this solution on YOUR website!
.
a=one leg=8ft; b=other leg=15ft; c=hypotenuse
Use Pythagorean Theorem to find length of hypotenuse.
.
c%5E2=a%5E2%2Bb%5E2
c=sqrt%28a%5E2%2Bb%5E2%29
c=sqrt%288%5E2%2B15%5E2%29
c=sqrt%2864%2B225%29
c=sqrt%28289%29
c=17ft
The third side is 17 feet.
.
Distance around plot (perimeter):
Perimeter=a+b+c
Perimeter=8ft+15ft+17ft
Perimeter=40ft
.
ANSWER: Jo will need 40 feet of fencing.

Answer by ikleyn(52800) About Me  (Show Source):
You can put this solution on YOUR website!
.
The perimeter of this right-angled triangle is

8 + 15 + sqrt%288%5E2+%2B+15%5E2%29 = 8 + 15 + sqrt%2864+%2B+225%29 = 8 + 15 + sqrt%28289%29 = 8 + 15 + 17 = 40 feet.