You can put this solution on YOUR website! I will assume (x-2)/x^2
denominator is x^4
numerator is vdu-udv=x^2(x)-(x-2)(2x)
=(x^3-2x^2+4x)/x^4= (x^2-2x+4)/x^3. If this is set =0, complex roots, so no max or min.
If I assume x-(2/x^2)
dy/dx= 1+4x^(-3)
If this is set equal to zero,
4x^(-3)=-1; x^(-3)=(-1/4), x=-1/4^(1/3), or about -0.63=x