| 
 
 
| Question 980413:  Use the standard normal distribution or the t-distribution to construct a
 98% confidence interval for the population mean.
 The gas mileages (in miles per gallon) of 45 randomly selected cars are listed below.
 
 2121
 2424
 1616
 2727
 1313
 2323
 1818
 1919
 1919
 1515
 1616
 1414
 2424
 1717
 2727
 
 
 2222
 2222
 1818
 1414
 1515
 1313
 1919
 1818
 2727
 2222
 2222
 1515
 1515
 2626
 1414
 
 2020
 1919
 2525
 2626
 1414
 2222
 2626
 1818
 1616
 1919
 2121
 2727
 2424
 2424
 2020
 
 Answer by jim_thompson5910(35256)
      (Show Source): 
You can put this solution on YOUR website! The mpg data values are in red. The other numbers in black are row numbers to keep track of all of the data in a neater form (compared to one long column of 45 values). 
 
 
|  | Mileage (mpg) | 
|---|
 | 1 | 21 | 22 | 20 |  | 2 | 24 | 22 | 19 |  | 3 | 16 | 18 | 25 |  | 4 | 27 | 14 | 26 |  | 5 | 13 | 15 | 14 |  | 6 | 23 | 13 | 22 |  | 7 | 18 | 19 | 26 |  | 8 | 19 | 18 | 18 |  | 9 | 19 | 27 | 16 |  | 10 | 15 | 22 | 19 |  | 11 | 16 | 22 | 21 |  | 12 | 14 | 15 | 27 |  | 13 | 24 | 15 | 24 |  | 14 | 17 | 26 | 24 |  | 15 | 27 | 14 | 20 |  
 n = 45 is the sample size. Since n > 30, we can use a standard normal distribution instead of the T distribution.
 
 Use a calculator to find
 
 sample mean: xbar = 19.911111
 sample standard deviation: s = 4.378783
 critical value: z = 2.326 (at 98% confidence)
 
 Optionally, you can use a table like this one to find the critical z value. Look in the bottom "Z" row and above the "98%" confidence level to find z = 2.326
 ----------------------------------------------------------------------
 
 The confidence interval is of the form (L,U) where L is the lower limit and U is the upper limit.
 
 Lower Limit (L):
 L = xbar - z*s/sqrt(n)
 L = 19.911111 - 2.326*4.378783/sqrt(45)
 L = 19.911111 - 2.326*0.652750429781364
 L = 19.911111 - 1.51829749967145
 L = 18.3928135003285
 L = 18.39
 
 Upper Limit (U):
 U = xbar + z*s/sqrt(n)
 U = 19.911111 + 2.326*4.378783/sqrt(45)
 U = 19.911111 + 2.326*0.652750429781364
 U = 19.911111 + 1.51829749967145
 U = 21.4294084996715
 U = 21.43
 
 The 98% confidence interval for mu is (L,U) = (18.39, 21.43) (rounded to 2 decimal places)
 
 Side Note: the margin of error is approximately 1.51829749967145
 
 | 
  
 | 
 |