You can
put this solution on YOUR website! Find the value of k for which a-3b is a factor of a⁴-7a²b²+kb⁴ .
Hence for this value of k, factorise a⁴-7a²b²+kb⁴ completely.
Divide by long division, inserting zero terms for missing terms +0a³b and
+0ab³:
a³ +3a²b +2ab²+ 6b³
a-3b)a⁴+0a³b-7a²b²+0ab³+ kb⁴
a⁴-3a³b
3a³b-7a²b²
3a³b-9a²b²
2a²b²+0ab³
2a²b²-6ab³
6ab³+ kb⁴
6ab³-18b⁴
kb⁴+18b⁴ <-- remainder
The remainder must = 0 so that a-3b
will be a factor of a⁴-7a²b²+kb⁴.
kb⁴+18b⁴ = 0
(k+18)b⁴ = 0
k+18=0; b⁴=0
k=-18; b=0
There is a trivial case for b=0 and k is any number,
which we ignore.
So k = -18
a⁴-7a²b²-18b⁴
(a²+2b²)(a²-9b²)
(a²+2b²)(a-3b)(a+3b)
Edwin