SOLUTION: show that 3 divides exactly any one of n,n+1 or n+3?
Algebra
->
Divisibility and Prime Numbers
-> SOLUTION: show that 3 divides exactly any one of n,n+1 or n+3?
Log On
Algebra: Divisibility and Prime Numbers
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Divisibility and Prime Numbers
Question 977112
:
show that 3 divides exactly any one of n,n+1 or n+3?
Found 2 solutions by
Alan3354, solver91311
:
Answer by
Alan3354(69443)
(
Show Source
):
You can
put this solution on YOUR website!
Duplicate, and it doesn't
------------
eg
4, 5 or 7
Answer by
solver91311(24713)
(
Show Source
):
You can
put this solution on YOUR website!
I think you meant the claim to be that 3 divides one of n, n + 1, or n + 2 since if 3 divides n it must, perforce divide n + 3.
Claim: For all integers n, 3 divides exactly one of n, n + 1, or n + 2
We prove by exhaustive cases using the Generalized Divisibility Theorem
Generalized Divisibility Theorem
such that
and
From which it follows that all integers can be represented by one of the forms:
for for some integer
Cases:
The three cases are exhaustive and each case has the same conclusion, hence the claim is proven.
John
My calculator said it, I believe it, that settles it