SOLUTION: ({{{ 2sqrt( 6 ) }}}+{{{ 7sqrt( 3 ) }}})({{{ 2sqrt( 6 ) }}}-{{{ 7sqrt( 3 ) }}})

Algebra ->  Square-cubic-other-roots -> SOLUTION: ({{{ 2sqrt( 6 ) }}}+{{{ 7sqrt( 3 ) }}})({{{ 2sqrt( 6 ) }}}-{{{ 7sqrt( 3 ) }}})      Log On


   



Question 97610: (+2sqrt%28+6+%29+++7sqrt%28+3+%29+)(+2sqrt%28+6+%29+-+7sqrt%28+3+%29+)
Found 2 solutions by mathslover, stanbon:
Answer by mathslover(157) About Me  (Show Source):
You can put this solution on YOUR website!
(+2sqrt%28+6+%29+++7sqrt%28+3+%29+)(+2sqrt%28+6+%29+-+7sqrt%28+3+%29+)
if +2sqrt%28+6+%29+ = x
and +7sqrt%28+3+%29+ =y then the given expression can be wriiten as
%28x%2By%29+%28x-y%29
+x%5E2+-+y%5E2+
Substituting back the values of x and y we have
+%282sqrt%28+6+%29%29%5E2+-+%287sqrt%28+3+%29%29%5E2+
4%2A6+-+49%2A3+
24+-++147
+123+

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
2sqrt( 6 ) }}}++7sqrt%28+3+%29+)(+2sqrt%28+6+%29+-+7sqrt%28+3+%29+)
---------------
(2sqrt(6) + 7sqrt(3) (2sqrt(6) - 7sqrt(3))
= (2sqr(6))^2 - (7sqrt(3))^2
= 4*6 - 49*3
= 24 - 147
= -123
=============
Cheers,
Stan H.