Multiplication of a 3-digit number by a single digit can be
performed like these two examples below:
943 458
7 9
21 <--7x3 72 <--9x8
28 <--7x4 45 <--9x5
63 <--7x9 36 <--9x4
6601 4122
So let QxQ=AB and QxP=CD
PPQ
Q
AB <--QxQ
CD <--QxP
CD <--QxP
RQ5Q
B must = Q, since we bring it down to the bottom line
PPQ
Q
AQ <--QxQ
CD <--QxP
CD <--QxP
RQ5Q
We need Q so that QxQ ends in Q
1x1=1, 2x2=4, 3x3=9, 4x4=16, 5x5=25, 6x6=36, 7x7=49, 8x8=64, 9x9=81
Since QxQ must end in Q, Q is 6, since Q obviously can't be 1.
Therefore AQ must be 36.
PP6
6
36 <--6x6
CD <--6xP
CD <--6xP
R656
In order to get the 5 on the bottom line, D must be 2.
PP6
6
36 <--6x6
C2 <--6xP
C2 <--6xP
R656
In order to get the left-most 6 on the bottom line, C must be 4,
PP6
6
36 <--6x6
42 <--6xP
42 <--6xP
R656
and then P must be 7, since 6x7=42
776
6
36 <--6x6
42 <--6x7
42 <--6x7
R656
Finally R can only be 4
776
6
36 <--6x6
42 <--6x7
42 <--6x7
4656
Edwin