SOLUTION: Find the value of tan2x on the interval (pi/2,pi) given that sin=(1/2)
Algebra
->
Trigonometry-basics
-> SOLUTION: Find the value of tan2x on the interval (pi/2,pi) given that sin=(1/2)
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 970380
:
Find the value of tan2x on the interval (pi/2,pi) given that sin=(1/2)
Answer by
lwsshak3(11628)
(
Show Source
):
You can
put this solution on YOUR website!
Find the value of tan2x on the interval (pi/2,pi) given that sin=(1/2)
sinx=1/2 (Q2)
cosx=-√3/2
sin2x=2sinxcosx=2*1/2*-√3/2=-√3/2
cos2x=cos^(x)-sin^2(x)=3/4-1/4=1/2
tan2x=sin2x/cos2x=-√3