SOLUTION: Mudog can do 8 jobs in 3 days, and jimmy can do 5 jobs in 2 days. Thirty nine jobs need to be done. Mudog works 3 days and then jimmy joins in. How many days will both of them have
Algebra ->
Rate-of-work-word-problems
-> SOLUTION: Mudog can do 8 jobs in 3 days, and jimmy can do 5 jobs in 2 days. Thirty nine jobs need to be done. Mudog works 3 days and then jimmy joins in. How many days will both of them have
Log On
Question 961502: Mudog can do 8 jobs in 3 days, and jimmy can do 5 jobs in 2 days. Thirty nine jobs need to be done. Mudog works 3 days and then jimmy joins in. How many days will both of them have to work together to complete the 39 jobs? Answer by josmiceli(19441) (Show Source):
You can put this solution on YOUR website! Mudog's rate of working is: jobs / days
Jimmy's rate of working is: jobs/days
-----------------------
Let = the number of jobs
Mudog gets done in days
There are jobs left to do
---------------
With both working together:
Multiply both sides by
They would have to work together for
6 more days to complete all the 39 jobs